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Abstract

We give sufficient conditions for the universality of tensor products {T,,@Rn :neN} of
sequences of operators defined on Fréchet spaces. In particular we study when the tensor
product TQ®R of two operators is chaotic in the sense of Devaney. Applications are given for
natural operators on function spaces of several variables, in Infinite Holomorphy, and for
multiplication operators on the algebra L(E) following the study of Kit Chan.
© 2003 Elsevier Inc. All rights reserved.
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A sequence {T,: E—E:neN} of operators on a Fréchet space E is called
universal provided there exists some universal vector xe€ E such that

{T,x:neN} =E.
In other words: Every element in E can be approximated by elements in the orbit of

x. An operator T on E is said to be hypercyclic if the sequence of its iterates
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{T":neN} is universal, i.e., T is hypercyclic if there exists some x € E with dense orbit

Orb(T,x) = {T"x:neN} = E.

If in addition 7" admits a dense subset Z < E of periodic points, then T is chaotic in the
sense of Devaney [15] (see e.g. [3]).

Our main purpose in this paper is to give a general tool which permits us to obtain
hypercyclicity, universality or chaos for operators that can be represented as tensor
products of simpler operators. This is the case, e.g., of many operators defined on
function spaces of several variables (translations, partial differential operators, etc.)
that admit a tensorial representation with factors consisting of operators on function
spaces of one variable.

The study of the chaotic behavior of linear operators on infinite dimensional
spaces goes back to Birkhoff in 1929 [7]. He showed that the translation operator
T,: #(C)»H(C), f(z)—>f(z+a), (a#0), is hypercyclic on the Fréchet space
A (C) of entire functions. This result was generalized by Godefroy and Shapiro [19]
who proved that every operator on # (CN ) that commutes with all translations, and
is not a scalar multiple of the identity, is chaotic. As a consequence they also
obtained that every partial differential operator on R", which is not a scalar multiple
of the identity, is chaotic on the Fréchet space C*(R"). In [8] hypercyclicity of
convolution operators on some Fréchet spaces of C*-functions is studied. The
existence of hypercyclic operators on arbitrary separable Fréchet spaces was proved
in [11] extending the Banach space result of Ansari and Bernal. However, not every
separable Banach space admits a chaotic operator [9]. During the last years there
have been many contributions to the topic by several authors, especially in the
Banach space setting. The article of Grosse-Erdmann [20] constitutes an exhaustive
up to 1999 survey of universal sequences of operators and hypercyclicity. Supercyclic
operators yield an interesting type of universality. We recall T is supercyclic if there
is a vector in the space whose multiples of the orbit form a dense set. Equivalently, if
the sequence {4,7":neN} is universal, where (4,) is some sequence in the scalar
field. Although not specifically stated, many of the results in this note remain valid
for supercyclicity.

In contrast with non-linear phenomena, where a rigorous establishment of chaotic
behavior is usually a difficult task, there are “‘computable” sufficient conditions for
hypercyclicity (and universality) of linear operators. These conditions are essentially
summarized in the so-called Hypercyclicity Criterion. It is not known whether every
hypercyclic operator satisfies this criterion, but many classes of hypercyclic operators
(e.g., chaotic operators [6]) fulfill the Hypercyclicity Criterion.

In the first section of this paper we recall basic definitions and facts about
universality and tensor products and we give all the general results concerning
universality, hypercyclicity and chaos of tensor products of operators. It is not
surprising that the Universality Criterion is involved in sufficient conditions for
universality of tensor products. However, this criterion is just needed in one of the
factors of the tensor product, while much weaker conditions are required in the

second factor. In particular we obtain that the tensor product T’ ®1 of an operator T’



F. Martinez-Gimeénez, A. Peris | Journal of Approximation Theory 124 (2003) 7-24 9

satisfying the Hypercyclicity Criterion, with the identity operator I, is hypercyclic.
We finish this section with the comparison of stability properties of hypercyclicity by
taking direct sums or tensor products. It is shown that 7@® T is hypercyclic if and
only if TQI is hypercyclic, which gives another equivalent formulation (in the
context of tensor products) of an old problem of Herrero.

The second section is devoted to examples and applications of the techniques
introduced in the first section. We characterize hypercyclicity of tensor products of
unilateral weighted backward shifts and we give an easier alternative proof of a
result of Abe and Zappa concerning universality of translations in # (C" ). The
methods of Section 1 also allow us to study the universality of multiplication
operators on the algebra L(E) endowed with the strong operator topology (SOT),
for separable Banach spaces E. This line of work was initiated by Kit Chan [12] who
showed that left multiplication operators Lr:B(H)— B(H), R— TR, on the
algebra B(H) of bounded operators on a separable Hilbert space with the SOT
are hypercyclic provided that 7T satisfies the Hypercyclicity Criterion. We generalize
his results using a different approach. We close the section with results concerning
hypercyclicity and chaos of certain composition operators in Infinite Holomorphy.
The results of this paper are part of F. Martinez-Giménez’s Ph.D. thesis [23], under
the advice of A. Peris.

1. Tensor stability of universality and chaos

From now on {7,: E—E:neN} will denote a sequence of (continuous and
linear) operators on a separable Fréchet space E. We will give a general sufficient
condition for universality. This condition is inspired in the so-called Hypercyclicity
Criterion given by Kitai [22] in her unpublished Ph.D. thesis and rediscovered by
Gethner and Shapiro [18]. We use the general form of this Criterion as given in [6].
The proof of universality for operators satisfying the Criterion is based on a Baire
category argument (see [20]). Even more, under the hypothesis of the following
definition, there exists a dense Gs set of universal vectors. Hypercyclicity is a
particular case.

Definition 1.1. We say that {7, :neN} satisfies the Universality Criterion (UC)
provided there exist X and Y dense subsets of £ and maps S, : Y - E, neN, such
that

n— oo

(1) T,x— 0 for all xe X,
(i) S,=2 0 for all yeY,
(i) (T, 8,)y=>5 y for all yeY.

An operator T on E is said to satisfy the Hypercyclicity Criterion (HC) with respect
to an increasing sequence of positive integers (ny), if the sequence of iterates
{T™ : keN} satisfies the Universality Criterion.
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Operators T satisfying the HC are characterized in [6] as those such that T@ T is
hypercyclic. This result established an equivalence between an open problem of
Herrero [21], which asks if T@ T is hypercyclic whenever T is, and the interesting
question of whether every hypercyclic operator on a separable Fréchet space satisfies
the HC.

Remark 1.2. (1) Let {7}, :neN} be a sequence of operators and (n;) an increasing
sequence of positive integers. It is easy to see that if {7}, : ne N} satisfies the UC then
{T,, 1 keN} also satisfies the UC, and that the existence of universal vectors for
{T,, : keN} implies the universality of {7, :neN}. This observation, together with
the convenience of presentation, motivates us to define the UC for the whole
sequence of integers instead of stating it in terms of subsequences.

(2) Without loss of generality we can suppose (and we will) that the dense subsets
X,YcE are actually subspaces and that the maps S, are linear in the above
criterion. This can be done by considering algebraic basis, contained in X and Y
respectively, of the span of these sets, and then linearly extend the original S, to the
span of Y.

Shapiro [27] gave another useful condition, known as the Hypercyclicity
Comparison Principle (HCP): If T:(E,t)—(E,7) is such that there is a dense
subspace F< E and a finer topology ' on F such that T|p: (F,7)—(F,7) is
hypercyclic, then T is hypercyclic. In [24] we generalized this result via commutative
diagrams. The following lemma is a consequence and we will use it repeatedly
through the paper.

Lemma 1.3. Let T;,: E;— E; : ne N be a sequence of operators on a separable Fréchet
space E;, i = 1,2, and let ¢ : Ey — E, be a continuous map with dense range such that
Trpo¢p=¢oT,, for all neN. That is, the diagram

Ty,
B, —— E

<Pi qﬁl
Tom
Ey, —— Ey
commutes for all ne N. If {T , : ne N} is a universal sequence (satisfies the UC), then
{T»,:neN} is also a universal sequence (satisfies the UC). For single operators

Ti:Ei—»E;, i=1,2 such that T, o ¢ = ¢ o T| we have:

(1) If Ty is hypercyclic, then T, is also hypercyclic.
(2) If T\ is chaotic, then T, is also chaotic.
(3) If Ty satisfies the HC, then T, also satisfies the HC.

The goal of this section is to study conditions under which tensor products of
operators are universal, hypercyclic or chaotic. A reasonable guess is that tensorizing
sequences of operators that satisfy the UC should lead to a universal sequence.
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However, we can give a stronger result since conditions on one of the factors can be
actually weakened. We have to introduce a new concept that is related to the UC.

Definition 1.4. We say that a sequence {7, :neN} of operators on E satisfies the
Tensor Universality Criterion (TUC) if there exist dense subsets X and Y of E, and
maps S, : Y- E, neN, such that

() {Tux},-, is bounded for each xe X,
(ii) {Suy},-, is bounded for each ye Y,

n— o0

(iil) (Tyo Sy)y— y for all yeY.

An operator T on E satisfies the Tensor Hypercyclicity Criterion (THC) with respect
to an increasing sequence of positive integers (ny), provided the sequence of iterates
{T™ : ke N} satisfies the TUC.

Remark 1.5. In a similar way to Remark 1.2, it is easy to see that if {7}, :neN}
satisfies the TUC and (m;) is an increasing sequence of positive integers, then
{T,, 1 keN} also satisfies the TUC. Also, without loss of generality, we may (and
will) suppose that the subsets X and Y in the previous definition are in fact subspaces
of E and that the maps S, are linear.

Example 1.6. (1) Obviously, sequences of operators satisfying the UC satisfy the
TUC.

(2) Any (surjective) isometry on a Banach space satisfies the THC with respect to
the sequence of all positive integers.

(3) If an operator R on a Fréchet space E has a dense set of periodic points, then R
satisfies the THC with respect to the sequence of positive integers. Indeed, let X be
the set of periodic points of R. Then {Rfx},., is bounded for each xe X, since the
orbit of a periodic point is finite, and Ry : X — X is a bijection. We define Sy =
Sk keN, where S = (R|X)71. In particular, if R" = I (the identity operator) for
some neN, then R satisfies the THC.

Let us establish the necessary notation and preliminaries on tensor products of
locally convex spaces. For a complete description we refer the reader to the book of
Defant and Floret [14, Section 35]. We will first recall the definition of the projective
tensor norm, associated with the nuclear norm of operators. If G is a locally convex
space then cs(G) denotes the set of all continuous seminorms on G.

Definition 1.7. Given G and H locally convex spaces, the projective topology n on
the tensor product G® H is defined as the locally convex topology generated by the
family of seminorms ./, = {p ®,q:pecs(G), gecs(H)}, where

n

P®rq(z) = inf{zn: PO)a(y) 2= x/@yj}, zeGOH.
=1

Jj=1
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For elementary tensors z =x®y we just have p ®,¢q(z) = p(x)g(y). With this
topology the space is denoted by G® ,H, and its completion is G®,.H.

Given a tensor norm “a” (see [14, Chapter II]), we have the corresponding locally
convex topology on the tensor product G® H of two locally convex spaces G and H.
The space is then denoted by G ® , H. The metric mapping property for tensor
norms yields that the operator 71 ® 7> : G1 ® ,G> — H| ® ,H) is continuous whenever
T,:Gi—»H, and T,:G,— H, are continuous operators between locally convex
spaces (see [14, 35.2]). On the other hand the projective topology is finer than the a-
topology on G® H. These two properties constitute all we need to know about
tensor norms for our purposes.

We can now state the main result of this section.

Theorem 1.8. Let E and F be separable Fréchet spaces. If the sequence of operators
{T!: E— E:neN} satisfies the UC, and the sequence of operators {T>: F - F :neN}
satisfies the TUC, then

(T'®T?: EQF—EQ®,F:neN}
satisfies the UC, and therefore is universal, for any tensor norm a.
Proof. Let X! Y'cE, X? Y?cF be dense subspaces and S!:Y'>E,
S2:Y?>F, neN, linear maps satisfying the conditions of UC and TUC for the

sequences of operators {7 : E—E:neN} and {T?: F > F : ne N}, respectively. We
will see that X = X'®@X?, ¥ = Y'® Y? and the maps

S, =S!®S>: Y->E®F, neN,

are such that conditions (i)—(iii) of the UC are satisfied for the sequence of
operators

(T, =T'®T? . EQ F>E®,F:neN}.

The fact that the maps S, i = 1,2, neN, are linear is essential in order to have
that S, (z) is independent of the representation of z as a tensor and, therefore, to get
that the maps S, are well defined.

It will suffice to show that convergences in (i)—(iii) are valid for the n-topology
(which is the finest one). To do this, let pecs(E) and gecs(F). Then, if we compute
on elementary tensors, we have

lim p ®- ¢((T, ®T;)(x1 ® x2))
= lim p(T;xl)q(zjz) =0, VxeX;, i=12,
since the first sequence tends to 0 and the second one is bounded. Analogously

lim p ®- g(Sy(y1®y2)) =0, VyeY;, i=1,2.
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This implies conditions (i) and (ii) of the UC by taking linear combinations of
elementary tensors. Finally,

lim p @5 ¢(TuSu(11®y2) = (11 ®2))
=1im p @7 ¢(TSu( 11 ®y2) — (11 RT;Soy) + (M T, Spy2) — (11 ®2))
< m[p(T,;S,(y1) = y1)a(T;S;( 72))
+ p()a(T;S;(32) =)l =0, VpieY, i=1.2,
which completes the proof. [
Remark 1.9. Universality is a phenomenon that occasionally occurs for operators
T, : G— H with different domain and range spaces. Corresponding UC and TUC
criteria can be defined, and a result which is analogous to theorem above holds if we

assume G Fréchet, and H metrizable and separable. We did not follow this
framework for convenience of the presentation.

The corresponding version for hypercyclicity is now a consequence of this
theorem.

Corollary 1.10. Let E and F be separable Fréchet spaces, and T:E—E, R:F—F,
operators such that T satisfies the HC and R satisfies the THC (with respect to a
common sequence of integers), then

TOR:E®,F>E®,F

satisfies the HC (and therefore is hypercyclic) for any tensor norm a.
An interesting particular case can be derived from Examples 1.6 (3).

Corollary 1.11. Let E and F be separable Fréchet spaces and T:E—E an
operator satisfying the HC. If the operator R:F—F has a dense set of periodic
points, then

TOR:E®,F—>E®,F

is hypercyclic for any tensor norm a.

This corollary and the fact that chaotic operators satisfy the HC [6, Proposition
2.14], have an important consequence about chaos of tensor products of operators.

Corollary 1.12. If E and F are separable Fréchet spaces, the operator Ty : E—E is
chaotic, and T, : F —> F has a dense set of periodic points, then

T\®Ty: EQuF—>E®F

is chaotic for any tensor norm a. In particular T, ® T is chaotic if T\ and T, are so.
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Proof. By [6, Proposition 2.14], T} satisfies the HC. By Corollary 1.11 we have that
T'®T is hypercyclic on EQ,F.

Let #(T))<E and 2(T,)cF be the sets of periodic points for 7} and 75,
respectively. We first observe that 2(T;) and 2(T,) are dense linear spaces, hence

P2(T))®P(T,) is a dense subspace of E®,F. On the other hand each point of
P(T))®P(T) is a periodic point for 71 ® T,. O

It is interesting to observe that chaotic operators 77 and 7, which do not satisfy
the HC with respect to a common sequence of integers can be constructed, but

T1E>§T2 should be chaotic in view of the previous result. This can be done, for
instance, with weighted shifts.

Remark 1.13. Those readers interested in transitivity or chaos for non-metrizable or
non-separable spaces might wonder about these properties for tensor products of
operators defined on arbitrary locally convex spaces. We notice that the HC always
implies transitivity, and that neither separability nor metrizability was necessary in
the proof of Theorem 1.8 to obtain the Criterion in the tensor product. Therefore, if
T and R are defined on general locally convex spaces, T satisfies the HC, and R
satisfies the THC, then T® R is transitive.

We would like to finish this section with a comparison of hypercyclicity of direct
sums with hypercyclicity of tensor products. It is known that if 7" and R satisfy the
HC, with respect to a common sequence of integers, so does the direct sum 7@ R.
The same is true for tensor products as a consequence of Corollary 1.10. However, if
T @R is hypercyclic then T and R are also hypercyclic, while it may happen that
T®R is hypercyclic with neither 7" nor R hypercyclic. If we take T := 2/ and the
backward shift R .= B, as operators defined on /, then it is evident that none of them
is hypercyclic. But TOR=1 @23, with the operator 2B satisfying the HC and I
satisfying the THC (both with respect to the whole sequence of integers). Corollary
1.10 gives the hypercyclicity of T ®R. The following result clarifies the connection
between hypercyclicity of tensor products and hypercyclicity of direct sums, and
yields another equivalent formulation (in the context of tensor products) of an old
problem of Herrero [21].

Proposition 1.14. Let E be a separable Fréchet space, T : E— E an operator, and F a
separable Fréchet space with dim(F)>=2. The following are equivalent:

(1) T satisfies the HC,

) TRI:EQ.F—>EQ,F is hypercyclic for any (some) tensor norm a.
3) TOT:-E®@E—-E®E is hypercyclic.

Proof. (1)—(2) This is a consequence of Corollary 1.11 by taking R = I.
(3) > (1) This is one of the implications in [6, Theorem 2.3].
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(2) - (3) Since dim(F) =2 there exist linearly independent f;*, f; € F’. Define then
¢ EQ.F>E®E,

o(3 wh) = (3 alhifid, X alhifi>).

The operator ¢ is surjective (given e;, e;€E, we take fi, f2€F such that { fi,f") =
0;; and we have ¢(e; ®f1 +e2®/2) = (e1, e2)). On the other hand

(ro1)(6(3 a®f)) = (3 Terc fifi >, S Terd fifs )
=¢((ren(} «ef)).

that is, the diagram

E&,F T8, EZ,F

I

EoE L EoE
is commutative. Lemma 1.3 completes the proof. [

We are ready to formulate an equivalent problem to Herrero’s, which asks
whether T@® T is hypercyclic whenever T is so. As a consequence of [6, Theorem
2.3], our problem is also equivalent to the question about the existence of hypercyclic
operators not satisfying the HC.

Problem 1.15. Is T®1I: E®,E—E® E hypercyclic for every hypercyclic operator T
on a separable Fréchet space E?

The case of the tensor product of an operator with itself seems to be even more
intriguing.

Problem 1.16. Let T be an operator on a separable Fréchet space. If T is hypercyclic,
is TQT hypercyclic? Is the converse true?

2. Examples and applications

This section is devoted to applications of the general theory described in the
previous section. We show a few possible future trends of applications of tensor
product techniques in the context of universality, chaos, and cyclic behavior of
operators. However, it is not our purpose to cover exhaustively many examples. The
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first example shows how to obtain universality of operators on function spaces of
several variables, based on the corresponding result for one variable. It was our aim
to characterize hypercyclicity of tensor products of operators within a “‘nice class™ of
operators. We do so for the class of weighted backward shift operators. It also turns
out that the study of universality of multiplication operators on the algebra L(E), as
a continuation of the work initiated by Chan [12], fits within the framework of tensor
products in a natural way: Proofs are much simpler and the results obtained are
stronger. Finally we study hypercyclicity and chaos of certain composition operators
in Infinite Holomorphy via tensor products.

2.1. Operators on function spaces of several variables

In 1929 Birkhoff [7] proved the universality of translation operators on #(C)
endowed with the topology of uniform convergence on compact sets. Godefroy and
Shapiro [19] showed that every operator on #(C") that commutes with all
translations, and is not a scalar multiple of the identity, is chaotic. A generalization
to %(CN ) of Birkhoff’s universality is due to Abe and Zappa [1, Section 2] (see
below). A much stronger result is presented in [4, Theorem 8]. Cyclicity (another
version of universality) of translation operators defined on certain function spaces of
several variables was studied in [25, Section 3].

Abe—Zappa’s result: Let #(C") be the space of holomorphic functions on CV
endowed with the topology of uniform convergence on compact sets. For acC", T,
denotes the translation operator

T,: H(CN)o H(CY): T,f(z) =f(z +a).

Let {a')) }i=1 be a sequence in CV with sup; ||a\/|| = co. Then the sequence {T bis
is universal.

Here is a proof using our tensor product techniques: We recall that #(C") can be
represented as the tensor product ® vz #(C) (it is enough to consider the extension
of the operator fi(z1) ® - @ fx(zn) —f(z1, ..., zy) = fi1(z1) - fn(zn)), and that the
operator T, on #(C") coincides with QY T w  on [ 4 (C). Since

n =1
sup; |[a)|| = oo, there exists an index 1<iy<N such that sup; \al(b/)\ = oo. Without
loss of generality we will assume that iy = 1, that lim;_, ., |a(1j>| = oo and that there

exists o == lim;_, o, ‘ZE—C;‘ (if not we pass to a suitable subsequence).
In this situation it is easy to prove that {Taﬁ ) }j>l satisfies the UC: We follow
Godefroy—Shapiro’s approach and define
X =span{e”:|e”|<1}, Y :=span{e”:|e*|>1}.
A Hahn-Banach argument shows that X and Y are dense in #(C) (see e.g. [19,

Section 5]). Alternatively it would be possible to give a direct argument. Let K be
a compact set of C and R>0 such that |z|<R for each zeK. For any function



F. Martinez-Gimeénez, A. Peris | Journal of Approximation Theory 124 (2003) 7-24 17

f(z) = ¢ of X and for each z of K we have
O (lad g
7 1

() ol
|(Tau>f)(z)|<ewR\e}~"1] | = elIR|e
1

Wl e
1 —

0.

We define S; = T ), jeN. Obviously T j°S;=Iy. For any function g(z) = e
1 1

of Y and for each z of K we have

Y
A lay ]
(J

. T A —— o
(S )< Rle | = HRle W) 0,

For coordinates i# 1, we have that either {|al(.j ) |};>1 is bounded, which easily implies
that {T)};., satisfies the TUC, or sup; |a§j)| = oo, which yields that {7},

satisfies the UC. Summarizing, we get a subsequence (n1;) of positive integers such
that (T w,)) satisfies the UC, and for each i#1, (T ) either satisfies the TUC or
a, a;

the UC. The conclusion follows from Theorem 1.8.

2.2. Tensor products of backward shifts

Weighted backward shifts constitute an important class of operators which is the
“favorite testing ground” for hypercyclicity (see [26]). The derivative operator,
defined on spaces of C*-functions in which the polynomials are dense, can be
represented as a weighted backward shift (see [19]). This motivates us to characterize
hypercyclicity of tensor products of weighted backward shifts on spaces of p-
summable sequences (1<p< o).

For 1<p<o, B:l,—[, denotes the backward shift operator defined by
B(xo,x1, ...) = (x1,x2, ...). Given a sequence of numbers {v;}.”,, the associated
weighted backward shift is the linear map B, (xo, x1, ...) = (v1X1, v2X2, ...). It is easy
to see that a weighted backward shift is well defined and continuous if and only if
{vi}il el, and we will assume this from now on. Salas [26] showed that B, is
hypercyclic on I, if and only if sup,.y [[\; [t = o0 (ISp<co or p=0).
Accordingly, the following result should not be too surprising.

Proposition 2.1. Let 1<p,gq<oco and let B,:l,—1,, B, :l,—1l, be two weighted
backward shifts. Then

B,®B,: [, ®uly—1, @,

is hypercyclic for any (some) tensor norm a if and only if
n
sup low;| = o0.
neN '
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Proof. First observe that for (xg,xi,...)el, and (yo,»1,...)€l; we have
[xoyol <[[x],[[¥ll;- Thus the map

Sl x lg=> K f(x, ) = Xopo

is a continuous bilinear map which induces a continuous linear map f'e(l,®,1/,;)
that we can extend to f' € (l,,@u l,)". The sequence {B"@B”};i | 1s equicontinuous on

L(Zp@alq, l,,@alq) (see [14, 35.2]). On the other hand, given ne N and x® y with xe/,
and yel,,

fo(B'®BL)(x®y) =f(BIx®B.y)

=f((v1+vaXp, ... ) Q (W1 =Wy, ...)) = ( H ijj>xny,,7
J=1

and

< H vjwj> B”®B” J(x®y) = ( H v,wj>x,,yn

Therefore by linearity and continuity,
fo(B'®B') = ( H u,w,> (B'"®B") (1)

on /, @ Iy for each neN.

If sup,cny [T, [oywj| < oo, by (1) and the equicontinuity of {B" ®B"}” | we then
have that {f o (B'® B")},.x is equicontinuous on (1, ® ,,)'. Thus for any zel, ® ./,
the set {f o (B'®B")(z)},.n is bounded on K, which implies that z cannot be
hypercyclic for B, ® B,.

Conversely, if sup,cn [[_; [vw;] = oo, we set

n
X=Y= {Z /Iiyjei®ej:)»,~,‘,‘eﬂ§, }’ZEN},

ij—=1
and define the forward shifts Sy(e;—;) = (1/vi)e;, Sw(ei-1) = (1/w;)e;, ieN. Note
that sup,cy [[j2; [yyw;| = co implies v;#0#w; for all ieN. Now the map S =
S, ®S,,: Y—Y is well defined. To show that B,® B,, satisﬁes the HC, we observe:
(i) Bl ®@ B!(ei®e;) is eventually 0, therefore B’”®Bm 2% 0 for each xe X.
(i) If we consider the constants

Cy=1+sup ||, Cy=1+sup |w,
ieN ieN
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then our hypothesis implies

my
Im(>1): H |oiwi| > C1 C,

i=1

my

I (>my_ + k) H |vwi| > kCKCk
i=1

Let ny = my — k, keN. Given i, jeN, we define

Diﬁj = H ‘U,4W.y|,

r<i

S<j

and we take k>max{i,j}. Then

1
S (e;®e;)|| = =——||e; e
|| ( i ® I)H H:Ik:l |Ui+rwj+r||| l+nk® ./+nkH
1 ckck Di ko
=D;;— : <D;; L2 <=tz % ),
1,] Hz+nk |Ur| 41y |Ws| 2y HT:kl \MHTQ |Ws| k

r=1 s=1

Hence S”kylﬂ 0 for each ye X.

(iii) The definition of S gives (B, ® B,,) S = Iy.
This means that ngB‘,‘, satisfies the HC with respect to the sequence () that we
selected, and therefore it is hypercyclic. [

Examples 2.2. (1) The tensor product of two hypercyclic operators is not necessarily
hypercyclic. The pair of weights v= (1) = (2,5,4,2,2,2,...) and w= (w) =
(3,2,2,4,4,4,...), satisfy sup, [T, v = oo and sup,.y [}, w; = o0, so B, and
B,, are hypercyclic by [26, Theorem 2.8]. Clearly H7:1 v;w; = 1 for all neN and by

Proposition 2.1 we obtain that B, ® B, is not hypercyclic.

(2) The condition for hypercyclicity of tensor products of weighted shifts clearly
implies that at least one of the factors satisfies the HC. This is probably all we can
say about the  factors. For  example, if  we  define U=
(1,2,2,1/23,1,1,1,2,2,2,2,2,2,1/27 1,1,1,1,1,1,1, ...), and the other weight w :
=(1,1/2,1,2,2,2,2,1/25 1,1,1,1,1,2,2,2.2.22.2.2 ...), then we have that
BL,@BW is hypercyclic, and both B, and B, satisfy the HC. However, a careful
analysis shows that there is no (1) such that one of the weighted shifts satisfies the
HC, and the other one satisfies the THC, both with respect to ().
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2.3. Multiplication operators on L(E)

Chan [12] studied the hypercyclicity of the left multiplication operator Lz (S) ==
T - S on the algebra L(H) (H Hilbert) endowed with the strong operator topology.
The proof of his result was direct assuming the HC on 7. The surprising fact is
that no Baire argument is available in L(H) endowed with this topology as it
is far from being a Fréchet space. This result was generalized to the algebra of
bounded operators on arbitrary separable Banach spaces in [13]. We will
characterize universality of left multiplication operators by using tensor product
techniques, which differs from Chan’s approach. In [10] we extend our study to
right multiplication operators, ideals of L(E), and we also treat non-Banach
spaces E.

We recall the natural inclusion of E*®E in L(E): f(e) =3 (ef,eye; if f =
> ef®e;eE*®E. This inclusion is dense if we consider the strong operator
topology (SOT) on L(E), i.e. the topology of pointwise convergence. Indeed, if
SeL(E) and xi,...,x,€E, we fix a projection P:E—span{xy,...,x,} and then
SoPeE*®E, SoPx;=S8x;, i=1,...,n. E*®QE, as a subspace of L(E) with the
operator norm, inherits the injective topology E* ®, E associated with the tensor
norm ¢, which is the coarsest tensor norm. Moreover, the restriction of Ly to E*® E
coincides with I® T.

Theorem 2.3. Let {T,:E—E, neN} be a commuting sequence of operators
defined on a separable Banach space E. Let us consider the left multiplication
operators

Ly, :L(E)>L(E):S—T,oS, neN,
on the algebra L(E) endowed with the SOT. The following are equivalent:

() {T,},-, satisfies the UC,
(i) {Lz,},2, is universal.

In particular, if T : E— E is an operator, then the following are equivalent:

(1) T satisfies the HC (respectively, is chaotic),
(i1) L7 is hypercyclic (chaotic).

Proof. (i) — (ii) We first observe that £ and (E*,c(E*, E)) are separable. Indeed, we
have that the closed unit ball B of E*, being o(E*, E)-compact and ¢(E*, E)-
metrizable, is g(E*, E)-separable. We pick a countable weak-* dense subset X < E*
and define Y as the ||.||"-closure of X. Then F = (Y,||.||")®,E is a separable
Banach space. The extension F —>E*—®EL<E) of the continuous inclusion gives us an
operator ¢ : F— L(E) with dense range since span{x®e, xeX, ecE} is dense in
L(E). By Theorem 1.8 {I®T,}, is universal on F. The implication follows by
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applying Lemma 1.3 to the commutative diagram
I®T,
—_—

F F

4{ "’J : (2)
L(E) 2 L(E)

(ii) > (i) If {L7,},2, is universal on L(E) we then pick x,yeE such that {x,y} is
linearly independent and consider the following commutative diagram:

L(E) . L(E)

d d

E @ E Tn®Th E /d_) E

where W(R) := (Rx,Ry), ReL(E), and ¥ is surjective. By a recent result of Bernal
and Grosse—Erdmann [5, Theorem 3.3] which improves a previous result of Bés and
the second author [6, Remark 2.6 (3)], we conclude that {7}, satisfies the UC
since {T,® T,},-, is universal.

The chaotic case follows from the simple observation that T is chaotic whenever
T®T does. [

2.4. Composition operators in infinite holomorphy

We finally give examples of hypercyclic and chaotic composition operators in
infinite holomorphy as a consequence of our tensor techniques. The first examples of
hypercyclic operators defined on a Fréchet space of entire functions on an infinite
dimensional Banach space were given by Aron and Bés [2]. More precisely they
showed that translation operators are hypercyclic on a certain Fréchet algebra of
entire functions on a Banach space. Here we will treat a different kind of
composition operators: Namely, composition with a linear operator.

We recall that, given a complex Banach space E, the space of entire functions
on E is

H(E) ={f:E—C.f is continuous and f|_ is
holomorphic for each F < E finite dimensional}.

We will consider on #(E) the topology t, of uniform convergence on compact
sets on E. The space of bounded entire functions on E is

Hy(E) ={feH(E):f(B) bounded for each B< E bounded}.
This space is usually endowed with the topology 75 of uniform convergence on the

bounded sets of E. If f'e #(E) (respectively f'e #,(E)) then f admits the expression
as a series

3

r0=3 00, :ep.
n=0 :
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where the series converges with respect 17, (75) and

difO) ,_ 1 [ fU2),,

n! _27'El |A|=1 )f’+1

Moreover, the map
Pu(f) =d"f(0): E5C:zi>dn f(0)(z)

is a continuous n-homogeneous polynomial.
The space of symmetric n-tensors on a Banach space F is defined by

® F = {Z z;® - ®z;: M finite, ZieF}r_,F®,,,®F.

ieM

We denote by ® . F the space of symmetric n-tensors endowed with the injective
tensor norm ¢. Then ®,, E* is a topological subspace of the space (?("E), 1;) of n-
homogeneous polynomials on E with the topology of uniform convergence on
bounded sets of E. Indeed, one just has to identify

®ps E* - 2("E)
QR > P:E - C

z > z,z*)"

Via this identification, if we define
G = {fe:#b(E) P(f)e Q E, VneN} S (AHB(E), tp),

then the Fréchet space #,.(E) = G™ is the algebra of entire functions of compact
type, i.e. the Fréchet algebra generated by the elements of £*. We notice that 5. (E)
is precisely the algebra on which Aron and Bés studied hypercyclicity of translation
operators. Our purpose is to study the composition operator Ry(f ) =f T, for T
linear. Observe that in this case f(7'(0)) = f(0). Therefore to get hypercyclicity we
have to consider functions which fix zero. This forces us to define #((E) =
{feA(E):f(0) =0} and #po(E) = {feA(E):f(0)=0}.

Theorem 2.4. Let E be a Banach space with separable dual E* and T : E—E an
operator such that its transpose T* : E* — E* satisfies the Hypercyclicity Criterion (is
chaotic). Then the composition operator

Rr: (%bCO(E)7Tb)_}(%bCO(E)5Tb)’ f|—>f0T,

is hypercyclic (chaotic). Conversely, if Ry is hypercyclic (chaotic) then we have that
T*: E* > E* is hypercyclic (chaotic). If E has the approximation property and T*
satisfies the Hypercyclicity Criterion (is chaotic), then Ry is hypercyclic (chaotic) on
(%O(E)v TU)'
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Proof. We recall that

G= {feyf,,(E) F(0)=0, P,(f)e & E*, VneN}

n,s

is a dense subspace of Hpo(E). If feG, then P,(Rr(f))=Pu(f)T =
(IT"®---@T*)(Pu(f))€ ®,s E* for all neN. This shows Ry(G)< G and therefore
Ry is well-defined.

The extension @n,m T =T, of T"®---®T" to @n,m E* = ®,, E*" satisfies
the HC (is chaotic) with respect to a sequence (n1;) (independent on n), by a similar
argument to the one of Theorem 1.8. Consequently there are X, ¥, < ,®"757£ E* dense
and Sy : Y, —>®/,m_,; E*, keN, such that T}, X,, Y,, and {S,,, },—, satisfy
(1)—(111) of Definition 1.1, neN.

Define now X = ,n(®i1 Xi), ¥ =U,en(@F_; Yx) (dense subspaces of
Hpeo(E))y Smy: Yo Hpeo(E)y Sy = @nenSum, keN. It easily follows that
Ry, X, Y, and {S,,},~, satisfy the conditions of the HC, therefore Ry is
hypercyclic (chaotic) on #p(E).

If Ry is hypercyclic, we consider the commutative diagram

jfl}c()(E) L / ?ic()(E)

PIJ Pll
where P; is the surjective map which associates the corresponding 1-homogeneous
polynomial to each entire function. Our Lemma 1.3 does the job.
If E has the approximation property and 7% satisfies the HC, once again the
comparison principle yields the conclusion since #4.0(E) < #o(E) is dense (see,
e.g., [16, Example 2.79]). O

We observe that our result remains valid for (DF)-spaces E with separable strong
dual E’,. This is a consequence of the fact that, in this case, (#5(E), 1) is also a
Fréchet space by a result of Galindo et al. [17].
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